
How does use of simulation in computer science and robotics relate to the use of
simulation in cognitive science? Are there ways in which simulation is used in
robotics and computer science that could be applicable to cognitive modeling?
Be sure to discuss multiple types of simulation, including probabilistic simula-
tion, simulations in planning (e.g. Monte-Carlo Tree Search), physical simulation
for computer graphics, and combinations thereof.

Introduction

Simulation has been used in many contexts in computer science, ranging from simulation for

physically-based animation, to probabilistic simulation, to simulated planning for learning

Markov Decision Processes (MDPs). These areas of computer science have developed algo-

rithms that I believe can play key roles in cognitive modeling, particularly in the framework

of resource-rational analysis (Griffiths, Lieder, & Goodman, 2015). First, I will describe

how notions of simulation in physically-based animation are themselves approximating a

computational-level solution, and that they are inherently biased towards a compatibility

with human perception. Second, I will discuss how simulation in control theory applies to

motor control, and how it relates to the idea of analysis-by-synthesis (Halle & Stevens, 1959,

1962) in cognitive science. Third, I will argue that contrary to recent claims, simulation is

not incompatible with planning; and, that recent planning methods are an intriguing class of

approximate algorithms that should be explored in resource-rational analysis, particularly in

concert with metacognition. Finally, I will describe how simulation is used to approximate

probabilistic inference.

Simulation in physically-based animation

In physically-based animation for computer graphics, the goal is generally to determine

the solution to a differential equation. However, these differential equations typically do

not have closed-form symbolic solutions and therefore must be simulated numerically. This

leads to many choices about which representations and approximations to use in order to

get a visually plausible animation. I see two parallels between physically-based animation
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and cognitive modeling. The first is related in particular to the notion of resource-rational

analysis (Griffiths et al., 2015), and the second is related to the preference in physically-based

animation for plausibility over accuracy.

In a resource-rational analysis, one first determines what the computational-level solution

to a problem is. The second step is to pick a class of approximate process-level solutions to the

computational-level problem, and ask the question of how that approximate solution should

be used in order to make optimal use of finite cognitive resources. Typically, resource-rational

analysis focuses on approximate solutions to the intractable problem of performing Bayesian

inference; however, this need not be the only computational-level problem. Physically-based

animation deals with another intractable computational-level. In this case, the question is

about how to compute what the value of a particular physical quantity will be (e.g., position,

orientation, velocity, topology, etc.) at a future point in time, given the current value for

that quantity (Witkin, Baraff, & Kass, 1997). However, as this is an intractable problem,

the field of physically-based animation is based on developing approximate solutions to this

problem (or, in the terminology of the field, finding tractable ways to model the physical

system). Thus, many approximate solutions already exist to the computational-level problem

of determining future physical quantities and are good candidates for a resource-rational

analysis regarding how people reason about future physical quantities.

I will give two examples of potential classes of approximate solutions, both in the domain

of liquid simulation. In physically-based animation, there are multiple ways that fluids and

liquids may be simulated. One class are grid-based Eulerian methods for simulating large

bodies of liquid such as the water in a swimming pool (Stam, 1999). This class allows

for different granularities of discretization in terms of the size of the grid squares; this

type of discretization is also similar to existing qualitative models of physical reasoning

(Forbus, 2011) and thus might be a way to tie a computational-level analysis of physical

reasoning to algorithmic-level models like qualitative simulation. A second class of models for

liquid simulation are particle-based Lagrangian methods for simulating the detailed dynamics
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of small quantities of liquid (Müller, Charypar, & Gross, 2003). Specifically, these types

of particle methods better capture behaviors such as splashing and interaction with other

objects. A well-known example is smooth particle hydrodynamics (SPH), which discretizes

the liquid into particles, each representing a small volume of the liquid. Particle-based

methods like SPH allow a modeler to choose the number of particles, thus providing another

avenue by which the amount of computation can be varied. Indeed, this approach is already

being explored by some researchers (Bates et al., CogSci 2015).

Methods in physically-based animation usually emphasize stability, plausibility, and ef-

ficiency over accuracy (Witkin et al., 1997; Stam, 1999; Müller, Dorsey, & McMillan, 2002;

Guendelman, Bridson, & Fedkiw, 2003; Bridson, Marino, & Fedkiw, 2003; Müller et al.,

2003). In particular, the keyword here is plausibility–what is plausible behavior if not

something that satisfies human perceptual expectations? I would argue that methods for

physically-based animation are already inherently biased towards approximations that are

cognitively plausible, and are thus more applicable than the analogous solutions in engineer-

ing (which are more focused on accuracy and precision). To given an example, researchers

in computer graphics have developed a method of model reduction in which the principle

vibration modes of a deformable object are computed, similar to finding the principle com-

ponents of a matrix (Nealen, Müller, Keiser, Boxerman, & Carlson, 2006). Physical behavior

can then be simulated in those subspaces, revealing the ways that an object might deform

“in general” (e.g., for a rectangular rod affixed to a wall, the modes might include bend-

ing left/right, bending up/down, twisting, etc.). Because human researchers agree that this

algorithm produces perceptually plausible behavior, it is worth investigating whether such

an algorithm could be used as a model for how people predict the behavior of deformable

objects.
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Simulation in control

One area in which the idea of simulation occurs in cognitive science is the notion of forward

and inverse models in motor control (Kawato, 1999; Flanagan, Vetter, Johansson, & Wolpert,

2003). The idea is that the motor system uses forward models to predict sensations occurring

from actions, i.e. xt+1 = f(xt, ut), where xt is the state at time t (which may include

position, velocity, and sense data) and where ut is the action taken at time t (which is

usually interpreted as force). Inverse models, also known as controllers, determine what

action should be taken in order to move from one state to the next, i.e. ut = g(xt, xt+1).

How are these models used, and how are they learned?

Another idea from cognitive science is that of analysis-by-synthesis. Originally proposed

in the domain of speech recognition (Halle & Stevens, 1962, 1959), analysis-by-synthesis is

the idea of learning about the world by synthesizing–or simulating–data from one’s generative

knowledge about how the world works. This idea has been explored in multiple domains,

including machine learning in the form of the Helmholtz machine (Dayan, Hinton, Neal, &

Zemel, 1995), as well as visual perception (Yuille & Kersten, 2006). In the context of forward

and inverse models in motor control, a hypothesis based on analysis-by-synthesis would

suggest that the sensorimotor system first learns a generative forward model of p(xt+1, xt, ut)

which is then used to learn a discriminative inverse model of p(ut|xt+1, xt). This would be

consistent with the finding that forward models are acquired before control in motor learning

(Flanagan et al., 2003).

Recent advances in robotics have experimented with models similar to those that would

be predicted by analysis-by-synthesis. Paraschos, Rueckert, Peters, and Neumann, 2015 have

developed a framework for learning probabilistic motion primitives (ProMPs) using Gaussian

Process (GP) regression. For each motion primitive, they learn a joint distribution over states

and controls, p(xt, ut), where the states include additional information about velocity and

sensory information. Using this generative distribution, they can flexibly combine motion

primitives; condition on specific states, controls, or sensory information; and chain motion
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primitives in sequence. Levine, Wagener, and Abbeel, 2015 also learn independent local

forward models and controllers and then use the marginal distributions over p(xt, ut) from

the local models to simulate training data for a discriminative model p(ut|xt) instantiated

in a neural network. A robot trained with the method from Levine et al., 2015 was able

to complete highly dexterous manipulations (such as putting a peg in a hole) or complex,

multi-step tasks such as turning a screw with a wrench (Han, Levine, & Abbeel, 2015).

Simulation in planning

There are two notions of simulation in planning: in one case, planning might involve running

simulations (for example, physical simulations) in order to determine the effects of actions; in

the other case, the simulation is the online planning process itself. Recent criticism of the use

of simulation has argued that simulation is infeasible in planning systems (Davis & Marcus,

n.d., 2014) and I will discuss some recent research in opposition to that argument. I will also

discuss simulated episodes in reinforcement learning as a resource-rational approximation to

the general problem of reinforcement learning.

Davis and Marcus, n.d., 2014 argue that simulation (specifically, physical simulation)

cannot in general be used for tasks beyond physical prediction. One area that they call out

in particular is planning, suggesting that simulation is too precise and/or computationally

intensive to be feasible in this domain. I offer two counterexamples to this claim. First,

Aoude, Luders, Joseph, Roy, and How, 2013 simulate trajectories of moving obstacles using a

combination of GP regression and rapidly-expanding random trees (RRTs), and demonstrate

that planning can not only make use of this type of simulation, but that such information

is crucial for making safety guarantees regarding how likely it is for a collision to occur.

Second, Kitaev, Mordatch, Patil, and Abbeel, 2015 demonstrate how physical simulation

of object dynamics is important for planning robot trajectories when contact with those

objects is inevitable. They also show how physical simulation need not depend on Monte

Carlo approximations; instead, they use a differentiable dynamics model that allows them
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to perform the necessary optimization without the need for many Monte Carlo samples.1

Turning to the more general problem of planning: how do people decide what actions to

take? The framework specified Markov Decision Processes (MDPs) provide a computational-

level solution to this question. Given a set of states S, actions A, and potentially unknown

transitions p(S ′|A, S) and rewards p(R|A, S), how should an agent act so as to maximize

their expected long-term reward? There are many reinforcement learning algorithms that

aim to solve this problem (Sutton & Barto, 1998), many of which can be run in simulation:

that is, the agent does not take real actions, only simulated actions, and observes transitions

and rewards according to an internal model of the environment.2 While traditional RL algo-

rithms have usually used point estimates of rewards and transitions, recent Bayes-adaptive

methods have proposed maintaining full distributions over possible transition and reward

models (Dearden, Friedman, & Andre, 1999). This has the benefit of allowing the agent to

perform efficient inference in complex structured domains (Ross & Pineau, 2008), similar to

how probabilistic models of cognition have showed how agents might quickly learn higher

level structures such as overhypotheses (Kemp, Perfors, & Tenenbaum, 2007). Even more

recently, an algorithm known as Monte-Carlo Tree Search (Browne et al., 2012) has been

proposed as a more feasible way to perform inference in Bayes-adaptive MDPs, specifically

in the formulation of the Bayes-Adaptive Monte Carlo Planning (BAMCP) algorithm (Guez,

Silver, & Dayan, 2013). The BAMCP method suggests a class of approximation algorithms

that could apply to how people solve the reinforcement learning problem (which it has been

suggested that they do, e.g. Baker and Tenenbaum, 2014), in which the amount of com-

putation can be adjusted through the number of simulations that are run. Moreover, there

are interesting questions regarding the meta-level decision problem of how to optimally use

simulation in the context of planning (Hay, Russell, Tolpin, & Shimony, 2012). While Hay

1Kitaev et al., 2015 did not develop the differentiable physics engine that they use. The physics engine
is called MuJoCo and was developed by Mordatch et al.

2Although reinforcement learning algorithms are frequently classified as model-based or model-free, a
model-free algorithm can still be used in simulation provided the agent has separately learned a model of
the environment.
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et al., 2012 discussed how the meta-level decision problem applies to MCTS in general, the

question has not been posed for the full Bayes-adaptive version (as far as I am aware).

Simulation in probabilistic inference

Probabilistic inference is perhaps the area of computer science that has already been most

widely explored in cognitive science, as it is a fundamental component in probabilistic models

of cognition (Tenenbaum, Kemp, Griffiths, & Goodman, 2011). Indeed, Griffiths et al., 2015

use probabilistic simulation as an example of the types of approximation algorithms that

should be used in resource-rational analysis. For example, Lieder, Griffiths, and Goodman,

2012 perform a resource-rational analysis involving simulation via the Metropolis-Hastings

algorithm in order to explain the anchoring bias (Tversky & Kahneman, 1974). Similarly,

Abbott and Griffiths, 2011 use probabilistic simulation via the particle filtering algorithm to

explain primacy and recency effects.

Another type of probabilistic simulation known as Hamiltonian Monte-Carlo (Neal, 2011)

has parallels to the same types of approximations I discussed earlier in the section on

physically-based animation. HMC must similarly solve an intractable differential equation,

and does so using the Leapfrog method. The Leapfrog method is an explicit integration

method, which means that it directly solves for f(x + δx) (though it does so in a way that

is more robust than Euler’s method, which is the canonical explicit method). However,

physically-based animation often relies on implicit time integration, in which a system of

equations with f(x + δx) on either side implicitly give the solution; however, the system of

equations must further be solved to get the actual solution. Implicit methods tend to be more

numerically stable than explicit solutions, and thus it is worth asking the question: could

HMC be computed with implicit time integration and still maintain its desirable properties?

If so, then changing the discretization of the time integration would be a way to manipulate

the amount of computation that HMC requires beyond just the number of samples.

Simulation may also occur in probabilistic inference not through direct Monte-Carlo
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sampling, but as a prior. Schulman, Lee, Ho, and Abbeel, 2013 make clever use of physical

simulation to compute the M-step of the EM algorithm in order to track the topology of

deformable objects such as rope, cloth, and foam. To enforce the likelihood term, they

convert the likelihood into a potential and then apply that potential as a force in the physics

simulation itself. The simulation is biased towards a low-energy state (the prior), and thus

the result of stepping the simulation forward after applying the likelihood potential gives

a posterior prediction of the current topology of the object. This type of way of thinking

about physical simulation in particular offers a different perspective on the idea of physical

reasoning being the result of Monte-Carlo sampling.

Conclusion

To conclude, I have outlined here several areas of computer science that have much to offer,

particularly in terms of thinking about how different forms of simulation might be candidate

approximation algorithms for use in resource-rational analysis.
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