What are probabilistic models of cognition? Please begin by situating them with
respect to alternatives (i.e., what are non-probabilistic models of cognition?).
Then describe what you see as the two or three key strengths of this approach,
illustrating each with examples.

Introduction

On the surface, probabilistic models of cognition are an application of Bayesian inference
to modeling how people reason about the world. In particular, rather than viewing Bayes’
rule in the traditional sense as P(A|B) o« P(B|A)P(A), probabilistic models of cognition
assign a particular meaning to the variables as hypotheses (H) and data (D). With this
interpretation, Bayes’ rule becomes P(H|D) o« P(D|H)P(H). The significance of writing
Bayes’ rule in this way is that it gives us a framework for describing how people reason
about the world by combining prior knowledge about the world (or inductive bias) with new
observations (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010).

However, probabilistic models of cognition are much more than a simple application of
Bayes’ rule. I will argue that the strengths of probabilistic models lie in their ability to
express complex, structured representations and to formalize explicit hypotheses about how
people think the world works in terms of their generative knowledge. Probabilistic models
of cognition are further strengthened by the strategy of rational analysis that is commonly
used to construct them.

Here, I will begin by discussing the distinction between probabilistic models of cognition
and non-probabilistic models of cognition. Second, I will explain how structured represen-
tations allow probabilistic models to capture complex forms of knowledge. Third, T will
discuss how that knowledge may capture not just the structure of data and hypotheses, but
of the generative process by which the data itself is created. Fourth, I will consider how the

strategy of rational analysis provides a principled way of constructing probabilistic models.



What are non-probabilistic models of cognition?

Before jumping in to describing what are non probabilistic models of cognition, I will briefly
summarize one way in which models can be distinguished: that is, what level of analysis they
are posed at (Marr, 1971). Marr’s levels of analysis consist of the computational level (at
which analyses are concerned with what the goal of a system is, and what the solution might
look like), the algorithmic level (at which analyses are concerned with specific processes by
which a solution to the goal can be computed), and the implementation level (at which
analyses are concerned with the physical realization of the solution).

Non-probabilistic models of cognition usually fall at the algorithmic level of analysis: they
are frequently committed to a particular type of representation. For example, connection-
ist models are committed to using distributed representations and a process of error-driven
learning (gradient descent via backpropagation). In another example, the model theory
(Johnson-Laird, 2012) is committed to a representation in terms of “mental models” and to
processes which manipulate those mental models. Qualitative reasoning models are commit-
ted to “qualitative” representations of knowledge such as the knowledge that X > Y, but
not specific values of X or Y (Kuipers, 1986; Forbus, 2011). Models of heuristics and biases
(Kahneman & Tversky, 1973; Tversky & Kahneman, 1974) typically assume a particular
type of process or representation that might cause such systematic errors.

All of the examples listed above either make a strong commitment to a particular algo-
rithm (e.g., backpropagation), to a particular representation (e.g., distributed representa-
tion), or to both. In contrast, probabilistic models of cognition are almost always formulated
at the computational level of analysis and typically do not make assumptions about processes,
though they may make abstract assumptions about representation. Probabilistic models of
cognition, while formulated in terms of Bayesian models, do not make assumptions about
the specific process by which those inferences are computed: for example, if a process-level
model of response time and accuracy can be described as performing Bayesian inference

(Bitzer, Park, Blankenburg, & Kiebel, 2014), then it is not inconsistent with a probabilistic



model formulated at the computational level.

It is important to differentiate the types of representations assumed by computational-
level probabilistic models from the representations assumed by algorithmic-level models: the
representations used by probabilistic models are concerned with the structure of information
rather than a particular encoding. For example, a probabilistic model might assume a rep-
resentation involving a causal Bayes’ net (Griffiths & Tenenbaum, 2009), but it is agnostic
as to whether that representation is actually instantiated as a set of distributed activations

in a neural network, or as a logical set of nodes and edges, or as a matrix, etc.!

Structured representations

One of the core strengths of probabilistic models are their ability to express abstract, struc-
tured representations. By interpreting Bayes’ rule in terms of hypotheses and data, prob-
abilistic models have the option of formulating the structure of hypotheses and data in
whatever way is most relevant to the problem at hand. Here, I will give examples from
several papers that formulate probabilistic models in terms of powerful representations.

In their paper on theory-based causal induction, Griffiths and Tenenbaum, 2009 outline
a framework for how mental theories (that is, people’s own theories about the world, not the
modeler’s theory about people) might be constructed. Griffiths and Tenenbaum, 2009 take
the idea that Bayes’ nets can be used for inductive reasoning and show how a probabilistic
model operating over the structure of the Bayes’ nets themselves can explain inductive
inferences about causal structure in the world.

In another example, Kemp and Tenenbaum, 2008 also make use of a graph representation—
specifically, a graph grammar—to show how people might extract structured representations

from data. In this paper, the grammar defines various types of graphs (e.g., chains, trees,

!There are some probabilistic models that do seem to make stronger commitments about the type of
representation. For example, Kemp, Tenenbaum, Niyogi, and Griffiths, 2010 assume knowledge to be repre-
sented in a binary matrix or tensor. I would interpret this assumption to not be a core piece of the model,
however, as long as whatever representation was used somehow expressed relationships between pairs of
entities. In order to actually compute the model predictions, a specific representation must sometimes be
chosen.



hierarchies, etc.) and the probabilistic model over the grammar expresses how a particular
graph representation might be chosen for a specific set of data.

Using a different type of grammar, Ullman, Goodman, and Tenenbaum, 2012 express
theories in terms of propositions and perform inference over theories with the help of a
probabilistic grammar specifying how propositions combine into Horn Clauses to form laws

within the theory.

Generative knowledge

Closely related to the idea of structured representations is the idea of generative knowledge.
The term “generative” is not always used in the same way, so I will attempt to provide a
definition of what I mean by “generative” in this context. First, in machine learning, a gen-
erative model is defined as modeling the joint distribution P(H, D) from which the posterior
P(H|D) can be computed. This is in contrast to a discriminative model, which models the
posterior distribution directly (Ng & Jordan, 2002). In this sense, most probabilistic models
are generative models as they almost always define the full joint distribution. In the context
of cognitive science, however, there is a more nuanced interpretation of “generative”.
Battaglia, Kersten, and Schrater, 2012 make the distinction between the generative pro-
cess and generative knowledge. They define the generative process to be the procedure by
which the world gives rise to our perceptions, and generative knowledge to be a person’s hy-
pothesis about how generative process works. The generative process should be distinguished
from structured representations, which apply to the form of the variables in a probabilistic
model (e.g., H and D). In contrast, the generative process reflects assumptions about the
distributions and processes by which H is generated or by which D is generated from H.
The generative knowledge in a probabilistic model may be relatively simple: for ex-
ample, knowledge about the statistics of the world. Griffiths and Tenenbaum, 2006 and
Lewandowsky, Griffiths, and Kalish, 2009 demonstrate that people have detailed knowledge

about the empirical distributions of every-day phenomena such as cake baking times, length



of poems, or lifespans.

Probabilistic models can also express egocentric generative knowledge, such as the relia-
bility of various sensory cues. This type of generative knowledge has been widely explored
in probabilistic models of perception (Battaglia et al., 2012), and has been used to explain
phenomena including visual illusions (Weiss, Simoncelli, & Adelson, 2002) and sensory cue
integration when the reliability of a cue is manipulated (Ernst & Banks, 2002). It has further
been suggested that such generative knowledge may underlie other perceptual processes such
as visual segmentation (Yuille & Kersten, 2006) or speech perception (Halle & Stevens, 1959,
1962; Bever & Poeppel, 2010).

Finally, probabilistic models can encode generative knowledge about complex, nonlinear
processes such as how physical objects behave (Teglas et al., 2011; Sanborn, Mansinghka, &
Griffiths, 2013; Smith & Vul, 2013).

Rational analysis

Given assumptions about structured representations and generative knowledge, a probabilis-
tic model of cognition encodes a highly specific and falsifiable hypothesis about how people
reason: hypotheses are structured in this particular form, and generative knowledge specifics
that hypotheses and data are generated in this particular way. However, in general there
always exists some probabilistic model that can capture any phenomena; how, then, should
one choose which probabilistic to act as a hypothesis? The strategy typically taken is that
of rational analysis (Anderson, 1990). The original version of rational analysis proposed
by Anderson, 1990 argued for constructing models which are optimal solutions to problems
posed at the computational level of analysis (Marr, 1971) while taking into account environ-
mental constraints. This approach has been remarkably successful in generating hypotheses
(instantiated as probabilistic models of cognition) for topics ranging from notions of similar-
ity (Tenenbaum & Griffiths, 2001), physical intuitions (Teglas et al., 2011; Sanborn et al.,

2013), perception (Weiss et al., 2002; Ernst & Banks, 2002; Koérding & Wolpert, 2004; Yuille



& Kersten, 2006), and theory learning (Kemp, Perfors, & Tenenbaum, 2007; Griffiths &
Tenenbaum, 2009; Kemp et al., 2010; Ullman et al., 2012), just to name a few domains.
Recently, it has been proposed that rational analysis can go even further than just guiding
hypothesis construction at the computational level. Griffiths, Lieder, and Goodman, 2015
suggest a new strategy of resource-rational analysis, in which a hypothesis is first generated at
the computational level. Second, a class of approximation algorithms are posited for actually
computing the solution proposed by the hypothesis. Third, these approximation algorithms
are analyzed in order to determine the optimal way to use computational resources under the
assumptions of the algorithm. For example, particle filters are an approximation algorithm
for Bayesian inference, and they can be analyzed to see how many particles are optimal for
a bounded agent to use. This approach has already seen success at bridging between the
computational and algorithmic levels of analysis, with rational process models suggesting
explanations for process-level heuristics and biases such as anchoring (Lieder, Griffiths, &
Goodman, 2012), availability (Lieder, Hsu, & Griffiths, 2014), primacy and recency (Abbott
& Griffiths, 2011), probability matching (Vul, Goodman, Griffiths, & Tenenbaum, 2014),

and theory change (Ullman et al., 2012).

Conclusion

To summarize, probabilistic models are distinct from non-probabilistic models in that they
are posed at the computational level of analysis. Probabilistic models involve two key com-
ponents: the ability to express structured representations, and the ability to express people’s
generative knowledge of how the world works. Probabilistic models are further supplemented
by the strategy of rational analysis. Although I would argue that rational analysis is not a
component of probabilistic models of cognition, it is a crucial strategy by which hypotheses
are selected and refined. In the resource-rational formulation of rational analysis, it addi-
tionally strengthens the probabilistic modeling enterprise by helping to connect probabilistic

models posed at the computational level to the algorithmic level.
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