Bases: gp.kernels.base.Kernel
Gaussian kernel function.
| Parameters : | h : float
w : float
|
|---|
Notes
The Gaussian kernel is defined as:
where \(w\) is the input scale parameter (equivalent to the standard deviation of the Gaussian) and \(h\) is the output scale parameter.
Kernel function evaluated at x1 and x2.
| Parameters : | x1 : numpy.ndarray with dtype='f8'
x2 : numpy.ndarray with dtype='f8'
|
|---|---|
| Returns : | K : numpy.ndarray
|
Create a copy of the kernel.
| Returns : | kernel : Kernel
|
|---|
Output scale kernel parameter
Hessian of the kernel function evaluated at x1 and x2.
| Parameters : | x1 : numpy.ndarray with dtype='f8'
x2 : numpy.ndarray with dtype='f8'
|
|---|---|
| Returns : | H : numpy.ndarray
|
Jacobian of the kernel function evaluated at x1 and x2.
| Parameters : | x1 : numpy.ndarray with dtype='f8'
x2 : numpy.ndarray with dtype='f8'
|
|---|---|
| Returns : | J : numpy.ndarray
|
Symbolic kernel function.
| Returns : | K : sympy.Expr
|
|---|
Input scale kernel parameter